III. Two-tail testing of 2 sample medians from independent populations using the Mann-Whitney test

- A. This hypothesis test is used when populations are not symmetrical and do not have equal variances.
- B. Data must be at least ordinal in nature.
- C. Procedures
 - 1. Data from 2 samples will be combined into an ordered array. Sample size may differ.
 - 2. Beginning with the number 1, data will be ranked. Equal data, called ties, will be given their averaged rank.
 - 3. Ranks will be assigned to their respective sample and the mean rank of each sample calculated.
 - 4. If population medians are equal, there will be little difference between the mean rank of each sample.
 - 5. Either mean calculation, U, or U, may be used.
 - 6. The sampling distribution of U will be approximately normal provided both samples n_1 and n_2 are ≥ 10 .
 - 7. Special procedures, not covered in Quick Notes Statistics, are used when either n is less than 10.
- D. Twenty-three employees were randomly assigned to training method A or B. Distribution shapes are not known. Linda wants to determine the equality of training methods at the .05 level of significance.

n ₁ is sample size ?	#1. n ₂ is sample size #2.	$U = U_1 \text{ or } U_2$
R ₁ is sample 1's ra	ank. R ₂ is sample 2's rank.	

$$H_o$$
: Median₁ = Median₂ H_1 : Median₁ \neq Median₂

$$Z = \frac{U - \mu_U}{\sigma_U}$$
 U is the test statistic. If z from the test statistic is beyond the critical value of z, H₀ will be rejected. That is, the medians are not equal.

$$U_{1} = n_{1}n_{2} + \frac{n_{1}(n_{1}+1)}{2} - R_{1}$$
or
$$U_{2} = n_{1}n_{2} + \frac{n_{2}(n_{2}+1)}{2} - R_{2}$$

Method		Rank		Ranked	Ranked Scores	
	_	1		d Array	1	
Α	В	and Method		Me	Method	
Sc	ore				Α	В
14	12	1.	12	В		1
17	21	2.	13	Α	2	
27	28	3.	14	A	4	
19	16	4.	14	В		4
13	30	5.	14	В		4
32	26	6.	16	В		6
22	14	7.	17	Α	7	
25	18	8.	18	Α	8.5	
18	28	9.	18	В		8.5
30	22	10.	19	Α	10	
24	14	11.	21	В		11
33		12.	22	Α	12.5	
		13.	22	В		12.5
		14.	24	Α	14	
		15.	25	Α	15	
		16.	26	В		16
		17.	27	Α	17	
		18.	28	В		18.5
		19.	28	В		18.5
		20.	30	Α	20.5	
		21.	30	В		20.5
		22.	32	Α	22	
		23.	33	Α	23	
			Tota	als R=	155.5 o	r 120.5

Totals R = 155.5 or 120.5

R₁ has been calculated using the chart.

$$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1$$

$$= 12(11) + \frac{12(12+1)}{2} - 155.5$$

$$= 132 + 78 - 155.5 = 54.5$$

$$\mu_U = \frac{n_1 n_2}{2}$$

$$\mu_U = \frac{n_1 n_2}{2} = \frac{12(11)}{2} = 66$$

$$\sigma_U = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$$

$$\sigma_U = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$$

$$= \sqrt{\frac{12(11)(12 + 11 + 1)}{12}}$$

$$= \sqrt{\frac{3,168}{12}} = 16.248$$

This two-tail .05 test has a z of ± 1.96 . Accept H₀ because z of -.71 from the test statistic is not beyond - 1.96. There is not a difference between these median scores.